Inter Pretation of Acid Base Disturbance in Critically ill Patients.

By :-Dr. Vinay Bhomia M.D.

Normal Blood PH 7.35 to 7.45 **Crucial importance to maintain** homeostatic function of Body. Any Significant change relates to change in H + ion con. in Plasma \gtrsim It Ph <7 or >7.8 \rightarrow Imminent danger

Death

Concept of Ph Acidity of Aqueous solution measured by H+ ion concentration. Notation of Ph is negative logarithm of H + ion Concentration $More H + ion \longrightarrow less Ph$ Less H +ion \longrightarrow high Ph

➢ H + ion concentration in extra cellular fluid determined by Balance between Pco2 and Hco3 concentration in the fluid

Follow equation

H + = 24 x Pcox(neg/L) HCo3
Using normal arterial Pco2=40 mm of hg Hco3=24 Eq/L H += 24x40 = 40 neg/Lit 24

H+=40neg/L \rightarrow Correlates with PH 7.4

 \rightarrow H +ion and Ph are inversely related.

 \bigcirc If change involves Pco2 \rightarrow Respiratory acid base disorder. \bigcirc Pco2 \rightarrow Respiratory Acidosis \bigcirc Pco2 \rightarrow Respiratory Alkalosis. ⇒If Chance involves Hco3 → Metabolic Acid Base disorder. \bigcirc Hco3 \rightarrow Metabolic Acidosis \bigcirc Hco3 \rightarrow Metabolic Alkalosis. $PH \downarrow 7.36 \rightarrow Acidemia$ $PH \uparrow 7.44 \rightarrow Alkalemia$

⇒ Tignt Control of Ph → Fairly constant values of Pco2 & Hco3.

⇒ Change in any one → Proportionate change in other to keep Ph constant.

⇒ Inc Pco2 → inc Hco3 → PH Constant.

Respiratory disorders (change in Pco2) initiates

Changes in HCo3- Metabolic response

Initial Chance in Pco2 or Hco3 is Primary

Acid Base disorder.

Subsequent response
 Compensated or Secondary Acid Base disorder.

Primary Disorder

Respiratory Acidosis

Respiratory Alkalosis

Metabolic Acidosis

Metabolic Alkalosis

Primary Compensatory Chance Chance PCo2 HCo3 HCo3 PCo2 HCo3 PCo2 HCo3 PCo₂

Metabolic acid Base disorder → Prompt Ventilatory response

Peripheral chemoreceptor (Carotid today)

> Metabolic acidosis \rightarrow Stimulates Chemoreceptor

Ses Ventilation

Ses PCo2 ➤ Metabolic Alkalosis → Silences Chemoreceptor

Ses Ventilation

Useful Formulas for Acid Base interpretation

- (1) Metabolic acidosis \rightarrow Expected PCo2 = (1.5xHco3) + 8+2
- (2) Metabolic Alkalosis \rightarrow Expected Pco2= 0.7xHco3+21+2
- (3) Acute respiratory → Expected PH= 7.4=(.008 x) acidosis
- (4) Acute respiratory alkalosis→ Expected PH = 8.4 + (0.008x(40-Pco2))
- (5) Chronic respiratory → Expected PH = 7.4 (.003xPco2-40) acidosis
- (6) Chronic respiratory → Expected PH = 7.4 + (0.003x40-Pco2)

Alkalosis

 In a Patient of Metabolic acidosis
 S. HCo3 is 15meq/L.
 Expected Pco2 = (1.5xHco3) + 8+2 = (1.5 x 15) + 8 +2 = 30.5 +2

If Pco2 is same then it is Compensated metabolic acidosis

If Pco2 is >30.5 + 2 than there is Superimposed respiratory acidosis

If Pco2<28.5 than there is associated respiratory alkalosis.

Compensation for Metabolic Alkalosis Expected Pco2 = 0.7x Hco3+21+2In a patient of Metabolic Alkalosis with Hco3 = 40meq/LExpected $Pco2 = 0.7x \ 40 + 21 + 2$ Pco2 = 28 + 21 + 2= 49 + 2 mm of hgIf measured Pco2 is equal to expected Pco2 than – Compensated metabolic Alkalosis than Metabolic alkalosis + respiratory If Pco2 is acidosis If Pco2 than Metabolic Alkalosis + respiratory alkalosis.

Compensatory changes of Hco3 in response to Pco2 Occur in kidneys takes 6 to 12 hrs to develop

Due to this

Acute Respiratory acid Base disorder Chronic

Acute Before Compensation Chronic After Compensation

Expected arterial Ph in Acute cases

 \rightarrow PH – 7.4 Patient Pco2 increases from 40 to 60 Arterial $PH = 7.4 = (0.008 \times Pco2 - 40)$ = 7.40 - 0.16= 7.24If Pco2 decrease from 40 to 20 Then arterial $PH = 7.4 + 0.008 \times 40 - Pco2$ PH = 7.40 + 0.16PH = 7.56

Expected arterial Ph in Chronic cases

Patient of emphysema + Co2 retention Pco2 60 mm of hg

Expected $Ph = 7.4 - 0.003 \times Pco2 - 40$

= 7.4 - 0.006

= 7.34

In acute rise → expected Ph was 7.24 due to renal Compensation Ph in chronic case is 7.34.

➢ Rule 1 Acid Base abnormality is present if either PaCo2 or PH is outside normal range.

- Rule 2 If PH &Pco2 are both abnormal see directional change.
- If both increase or decrease in same direction disorder is metabolic
- If both change in opposite direction disorder is respiratory

PH – 7.23 Pa Co2 – 23 mm of hg PH & Pa Co2 are both So Pt has metabolic acidosis

Rule 3 If PH or PaCo2 is normal > Mixed metabolic and respiratory acid Base disorder. If PH is normal – direction of change of PaCo2 **Identifies respiratory** acidosis of alkalosis If paCo2 in normal \rightarrow direction of change in PH identifies metabolic disorder

In Primary metabolic acidosis

- Use measured HCo3 \rightarrow to Calculate expected Pco2.
- ➡If measured Pco2 = expected Pco2 fully compensated
- If measured Pco2>expected Pco2 Superimposed respiratory acidosis
- ➡If measured Pco2 < expected Pco2 Superimposed respiratory alkalosis.</p>

≥PH – 7.32 PCo2 – 23 mm of hg HCo3 - 15 meg/LPH. Hco3 Metabolic acidosis Expected PCo2 = 1.5x15 + 8+2= 22.5 + 8 + 2= 30.5 + 2

Measured PCo2 is 23 < Expected PCo2 is 30.5
Superimposed respiratory Alkalosis on metabolic acidosis.

≥ In Respiratory acidosis or Alkalosis use Paco2 to calculate expected PH. > Compare measured PH to expected PH Decide if Condition is Acute Partially Compensated **Compensated** > In respiratory acidosis If measured PH < expected PH then there is Superimposed metabolic acidosis.

 \geq If measured PH> expected Ph then Superimposed metabolic alkalosis. In respiratory alkalosis If measured PH<expected Ph then Superimposed metabolic acidosis If measured PH>expected PH then superimposed metabolic alkalosis.

PH 7.54 PCo2 23 PaCo2 & PH are chanced in opposite direction. So Problem is respiratory alkalosis. Expected Ph = 7.4 + 0.008 x (40-23)= 7.54- Condition is Uncompensated respiratory Alkalosis.

Anion Gap → Estimate of relative abundance of Unmeasured anions.
 Used to determine if lactic acidosis
 Due to accumulation of non volatile acids
 Loss of Bicarbonates (Diarrhoea)

Anion gap \rightarrow (UA – UC) = Na - (CL+HCo3) UA= Unmeasured Anions Uc = Unmeasured cations Normal AG= 12+4 meq/L

Influence of Albumin

⇒Albumin → major source of unmeasured anions.

⇒50% ↓ Albumin → 75% reduction in anion gap.

⇒Hypo Albumenia → Common in ICU

⇒Influence of Albumin on AG is important.

Adjusted AG = observed AG+2.5x(4.5measured Albumin G/DL) Pt \rightarrow Calculated AG \rightarrow 10 meq/L Serum Albumin 2 g/dl Adjusted $AG = 10 + (2.5 \times 2.5) = 16 \text{ meq/L}$ 60 % increase \succ Seemingly normal AG \rightarrow transformed in elevated AG. Important formula in Pts of ICU Albumin.

Common causes of Metabolic acidosis

High AG acidosis	Normal AG acidosis
Lactic acidosis	Diarrhoea
Keto acidosis	Isotonic saline infusion
End stage Renal failure	Early renal insufficiency
Methanol injestion	Renal acidosis
Ethylene glycol ingestion	Acetazolamide
Salicylate toxicity	Ureteroenterostomy.

Fixed acid \rightarrow added to intracellular space **H**+ions Anions H+ combines HCo3 → Carbonic acid → leads to high Anion Gap HC₀3

In Metabolic acidosis \rightarrow loss of Bicarbonate from extra cellular fluid Countered by gain of Chloride ions to maintain electrical charge neutrality Chloride – Proportional \rightarrow loss of Bicarb So AG = Na - (CL + Hco3) remain constant. CL increase \rightarrow termed hyper chloremic metabolic acidosis.

C/f → Metabolic acidosis

Hyperventilation (stimulation of Res Centre)

- →Obtunded Mental State (Drowsiness → deepcoma)
- →Smell of ketones or Ammonia
- → Progressive deterioration of clinical state

A Lactic acid acidosis

> Lactic acid \rightarrow Product of Glucose metabolism.

Most common causes

- * Sepsis
- ★ Septic shock
- ★ Cardiogenic shock
- ★ Hypoxia

*

- ★ Severe Anemia
- ★ Severe Liver cell dysfunction
- ★ Thiamine deficiency.
- * D Lactic acid Acidosis (Dextro isomer) bacillus fragilis,gm-ve
- * Severe respiratory or metabolic Alkalosis
- ***** Drugs \rightarrow epinephrine
 - \rightarrow Nitro pruside

Diagnosis –

ABG
High Anion Gap >30
If PH < 7.25
Urgent Mx required.

In any acidosis \Rightarrow Treatment \rightarrow for the Basic cause Important to temporarily current acidosis by giving 7% Soda BicarbSoln. **Improves Pump function** Improves Systemic Blood Pressure Improved Perfusion to tissues.

Sodium Bicarb replacement Formula \rightarrow Body wt x 0.3 x (desired HCo3- serum Hco3) ≻Give 50% as initial bolus Rest replace as infusion in 4 to 6 hrs. >In associated respiratory acidosis correct respiratory acidosis then tackle metabolic acidosis.

Metabolic Alkalosis

<u>Aeti</u>

→ Vomiting or Nasogastric suction

- loss of gastic juice(50-100meg/L of H +ion)
 - Also associated loss of Cl, Nat, K+ &H2o

🖎 Diuretics (Furosemide)

Loss of Chloride

Water

Nat

K+

Chloride replaced by Bicarb \rightarrow absorbed \rightarrow leads to alkalosis

- In Crease K+ loss \rightarrow H+ in distal tubule-- alkalosis
- Water loss \rightarrow Aldstone \rightarrow Promotes loss of k+ &H+

Administration of excess Alkali

orally Į/V

Renal dysfunction – Prevents Bicarbs excretion

Associated electrolyte dysfunction (Chloride depletion)
 Over enthusiastic use of 1/v soda Bicarb

Corticosteroid therapy

Adrenocortical hyperfunction Aldosteronism Well marked hypokalemia **Metabolic Alkalosis Mental** obtundation **Seizures Cardiac dysfunction Cardiac** arrhythmias **Nentilation** may be depressed (secondary increase of paCo2) Shifts o2 curve to left \succ ses delivery of o2 to tissues.

Disastarous consequence.

Management \geq Almost always \rightarrow chloride responsive Replacement by N saline > Hypokalemia \rightarrow KCL Mineralocorticoid excess -> Aldactone Formula – Chloride deficit = 0.27 x wt x (100 - measured)Volume of saline in Lit = Cl deficit 154

Use of HCL

Rare instances When Alkalosis not corrected **Saline** \supset K+ replacement 0.1 N HCL Soln Used Infusion – 0.2meg/K/hr Very dangerous **C**Thrombophlebitis Continuous arterio venous hemofiltration

THANK YOU